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Abstract

We analyze an environment where the uncertainty in the equity market return and its volatility

are both stochastic and may be potentially disconnected. We solve a representative investor’s

optimal asset allocation and derive the resulting conditional equity premium and risk-free rate

in equilibrium. Our empirical analysis shows that the equity premium appears to be earned for

facing uncertainty, especially high uncertainty that is disconnected from lower volatility, rather

than for facing volatility as traditionally assumed. Incorporating the possibility of a disconnect

between volatility and uncertainty significantly improves portfolio performance, over and above

the performance obtained by conditioning on volatility only.
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‡Instituto Tecnológico Autónomo de México (ITAM). E-mail: felix.matthys@itam.mx
§Board of Governors of the Federal Reserve System. E-mail: emilio.osambela@frb.gov
¶Department of ORFE and Bendheim Center for Finance, Princeton University. E-mail: sircar@princeton.edu



“You would think if uncertainty was high, you’d have a bit more volatility.”

William Dudley, New York Fed President, February 15, 2017.

1. Introduction

Although the notions of uncertainty and volatility are often used interchangeably, the two concepts

are inherently different: volatility measures the dispersion of short-term shocks around a long-term

mean, while uncertainty measures the difficulty to forecast the distribution of returns, including its

long-term mean. Figure 1 contains a scatter plot of volatility and uncertainty at the weekly frequency

between January 1986 and December 2020, proxied respectively by realized volatility computed from

high-frequency data and the economic policy uncertainty index (EPU) of Baker et al. (2016). The

figure shows that the two variables, although generally positively correlated, are far from being

perfect substitutes for one another. The degree of connection between uncertainty and volatility

appears to vary across periods.

The findings in Figure 1 are consistent with recent empirical evidence. It is natural to expect

uncertainty and volatility to be in general positively correlated, as the quote above implies. For

example, Amengual and Xiu (2018) show that the resolution of monetary policy uncertainty is

associated with declines in volatility. However, there have been several episodes in which either

volatility was high and uncertainty was significantly lower or vice versa. For instance, the US 2016

presidential election generated some uncertainty about long-term economic and other policies, but

was surprisingly characterized by very low levels of stock market volatility. Similarly, the UK’s

exit from the EU (Brexit) involved substantial uncertainty about trade, growth, and immigration

policies for the UK and the EU, but had a barely noticeable impact on short-term volatility in their

respective stock markets. These events are examples of situations in which a disconnect between the

two variables appeared because uncertainty was substantially higher than volatility. By contrast,

the stock market dynamics during the financial crisis in 2008 and the initial stock market reaction

to the diffusion of the Covid-19 pandemic in the spring of 2020 are examples of situations in which

a disconnect occurred due to a higher increase in volatility compared to the rise in uncertainty.

Interestingly, in the months following the stock market crash in March 2020, volatility declined much

faster than uncertainty, leading to a switch in the nature of disconnect, characterized instead by

uncertainty being higher than volatility.

INSERT FIGURE 1 ABOUT HERE
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Motivated by these empirical observations, we construct a novel asset pricing model in which

uncertainty and volatility are two separate stochastic processes, whose degree of connection is fur-

thermore stochastic. In the context of the simple regimes exhibited in Figure 1, our model delivers a

different equity premium, risk-free rate, and portfolio strategy in regimes in which uncertainty and

volatility are high or low at the same time (connected), compared to regimes in which one of them

is significantly higher than the other (disconnected). We show that incorporating this potential dis-

connect leads to substantially improved forecasts of the equity premium and portfolio performance.

We model uncertainty using the framework of a robust control problem pioneered by Hansen

and Sargent.1 The investor recognizes that he is unable to know exactly the true underlying model

and is therefore subject to model uncertainty. As a result, he considers instead a reference model

that represents his best estimate of the true underlying model. However, due to model uncertainty,

he acknowledges that his reference model may be different from the true one, and he would like

his optimal consumption and portfolio to be robust to this possibility. Accordingly, he assumes

that the true underlying model lies in a set of alternative models. To make sure that his model

uncertainty concerns are realistic, he only considers alternative models that are statistically difficult

to distinguish from the reference model and are therefore difficult to reject empirically. Accordingly,

the investor imposes an upper bound on the growth rate of the alternative models’ distance to the

reference model, which we measure using relative entropy. The upper bound on entropy determines

model uncertainty. When the bound is large (respectively, small), alternatives that are statistically

far from the reference model will fall below (respectively, above) the bound, and the investor will

face high (respectively, low) uncertainty about the reference model.

A key contribution of our paper is that we generalize model uncertainty (captured by the upper

bound on relative entropy growth) to be driven by the product of stochastic volatility and a new

“disconnect” stochastic process, that drives a wedge between volatility and uncertainty.2 Because

the investor is interested in policies that are robust across the set of alternative models, he optimally

evaluates his policies under the worst-case alternative in the set of models satisfying his entropy

growth constraint. For that reason, the dynamics of volatility and disconnect, which drive the

1See, for example, Anderson et al. (2003), Hansen et al. (2006), Cogley et al. (2008), Hansen and Sargent (2008),

and Hansen and Sargent (2011). For a discussion and comparison of the max-min expected utility of Gilboa and

Schmeidler (1989) and robust control theory, see Hansen and Sargent (2001) and Hansen et al. (2006).
2While disconnect is modeled here directly, there are different approaches that can be employed to justify its

presence. For instance, in Pastor and Veronesi (2012)’s model political uncertainty deterministically increases stock

return volatility. If the constant signal precision in their model was generalized to be stochastic, a stochastic disconnect

would arise. Alternatively, Barroso and Detzel (2021) show that the performance of the volatility-managed portfolios

in Moreira and Muir (2017) is increasing in a sentiment variable, consistent with prior theory by Yu and Yuan (2011)

showing that sentiment traders are expected to underreact to volatility. Therefore a stochastic sentiment can be a

source of disconnect as well.
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entropy bound or model uncertainty, endogenously have an important impact on asset prices and

the associated optimal policies of the investor.

We first solve the model in partial equilibrium, computing in closed form a representative log-

utility investor’s optimal policies for consumption and portfolio choice. We show that the investor’s

optimal equity holding consists of the standard myopic term, which is inversely proportional to stock

return variance, and a new (yet still myopic as befits a logarithmic investor) uncertainty correction

term, which is the optimal response to the potential disconnect between volatility and uncertainty.

We find that the contemporaneous interaction of volatility and uncertainty plays an important role

in determining optimal portfolios. In particular, the sensitivity of portfolio weights to changes in

volatility depends on the level of model uncertainty. Accordingly, the trajectory of portfolio weights

in a given period depends on the joint dynamics of volatility and uncertainty, including whether they

are connected or disconnected.

Given the optimal asset allocation by a representative investor, we solve for the equilibrium

equity premium and risk-free rate, which are non-linear functions of both stochastic volatility and

disconnect. Our model predicts that the uncertainty term embedded in disconnect generates a flight-

to-quality-like correlation among asset returns. In high-uncertainty periods investors require a high

equity premium to hold the risky asset and are willing to accept a low risk-free rate to hold the

safe asset. The presence of stochastic volatility may amplify or diminish these effects depending on

whether it is connected or disconnected from uncertainty, respectively. The interaction of volatility

with a possibly disconnected uncertainty means that our model can generate a high equity premium

in a low volatility environment, whenever the disconnect is high. These empirical patterns were

observed in the period surrounding the US 2016 election, among other disconnect episodes.

Our model’s results can help explain the challenges faced by previous empirical studies trying to

establish a risk-return trade-off using volatility alone as a measure of risk. While most theoretical

asset pricing models imply a positive relationship between return and risk, the empirical evidence

for such a trade-off is mixed or inconclusive, and depends on the sample period and methodology,

including whether total or idiosyncratic volatility is considered.3 Although our model also implies a

positive relationship between return and volatility, it adds a new component in the equity premium

associated with the disconnect between volatility and uncertainty, which is also theoretically positive.

Including this component allows our model to more accurately reproduce asset pricing patterns. For

instance, our model suggests that both positive and negative risk-return trade-offs are possible,

according to volatility and uncertainty being connected or disconnected, respectively.

3See, for example, Merton (1980), French et al. (1987), Glosten et al. (1993), Goyal and Santa-Clara (2003), Ang

et al. (2009) and Campbell et al. (2018).
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Empirically we find that, once a disconnect is possible, stock returns respond negatively to

contemporaneous return volatility, which is consistent with the prevalence of the leverage effect

in the data but inconsistent with the predictions of the vast majority of theoretical asset pricing

models. However, we also find that returns respond positively and consistently across horizons to

uncertainty, as predicted by our model. Our results therefore show that allowing for uncertainty to

be disconnected from volatility makes uncertainty a much better variable than volatility in terms of

generating a trade-off with expected returns: it appears from our results that the equity premium

is earned mainly for facing uncertainty, especially high uncertainty that is disconnected from lower

volatility, rather than for facing volatility per se.4

We then go on to evaluate the portfolio performance of a reference investor who predicts future

excess returns using our estimated relation between stock excess return, volatility, and uncertainty.

We find that our model significantly improves portfolio performance relative to both existing uncon-

ditional and conditional asset pricing models, including those that time volatility but do not account

for its potential disconnect from uncertainty,5 and those that allow for the presence of uncertainty but

not for its disconnect from volatility. These results are valid when back-testing the model in-sample

but also out-of-sample.

Our work is motivated by a growing literature that analyzes the effect of uncertainty on the

equity premium, both theoretically and empirically. For instance, the theoretical work of Pastor and

Veronesi (2012) and Pastor and Veronesi (2013) shows that political uncertainty shocks command

a risk premium and stocks become more correlated and volatile in periods of elevated political

uncertainty. Similarly, Bidder and Dew-Becker (2016) show that a model with recursive preferences

and uncertainty about the dynamics of consumption is consistent with a large and time-varying

equity premium. On the empirical side, Brogaard and Detzel (2015) show that uncertainty positively

forecasts excess returns and innovations in uncertainty carry a significantly negative risk premium,

while Bali et al. (2017) find that the difference between returns on portfolios with the highest and

lowest uncertainty beta is negative and highly significant. All of these papers are consistent with

the notion that investors care not only about expected returns and risk, but also about uncertainty.

In our paper, the fact that the equity premium responds to both volatility and uncertainty is not

assumed. Rather, it occurs endogenously in the model because the investor is averse to volatility

4The relation between uncertainty and returns has been considered at least since Keynes’ General Theory (Keynes,

1936, p. 148): “The state of long-term expectation, upon which our decisions are based, does not solely depend,

therefore on the most probable forecast we can make. It also depends on the confidence with which we make this

forecast—on how highly we rate the likelihood of our best forecast turning out quite wrong.” We provide empirical

validation for this relation, in a setup in which volatility also drives returns.
5The volatility-managed portfolios in Moreira and Muir (2017), which take less risk when volatility is high, produce

large alphas and Sharpe ratios. We show that incorporating disconnect as an additional variable achieves even higher

portfolio performance.
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(risk-averse in the standard sense) but also averse to uncertainty.

In existing models that do not account for model uncertainty, time-varying volatility drives the

optimal policies of a risk-averse agent, but there is no mechanism to account for the uncertainty

attached to the assumptions of the model (see, for example, Chacko and Viceira (2005), Liu (2007),

and Drechsler and Yaron (2011)). On the other hand, in models in which the agent is averse to

model uncertainty but volatility is constant, the optimal portfolio strategy is to reduce the exposure

to risky assets when uncertainty increases (see, for example, Trojani and Vanini (2000), Maenhout

(2004), Maenhout (2006), and Illeditsch (2011)). Since volatility and returns tend to be negatively

correlated, the resulting conservative asset allocation makes the investor forgo much of the upside of

asset markets in situations in which volatility fails to materialize despite levels of uncertainty above

or close to average, such as the aftermaths of the US 2016 election, Brexit, and the months following

the stock market crash of March 2020 driven by the pandemic. We show that including uncertainty

and volatility separately allows the investor to take advantage of such situations.

Liu et al. (2005) consider a setup with constant diffusive volatility but in which the stock price

is subject to jump risk and the investor is averse to uncertainty with respect to jumps. They show

that their model is consistent with several empirical patterns of option prices. Jahan-Parvar and

Liu (2014) show that a production-based asset-pricing model with regime-switching productivity,

constant volatility in each regime and ambiguity aversion can reproduce, among other empirical

patterns, predictability of excess return by investment-capital, price-dividend, and consumption-

wealth ratios.6 In contrast to these papers, in our model both stochastic volatility and uncertainty

predict excess returns, and we show empirically that this predictability generates high portfolio

performance, especially in periods of high uncertainty that is disconnected from low volatility.

Faria and Correia-da-Silva (2016) study optimal asset allocation for an investor subject to stock

return stochastic volatility and constant ambiguity uncertainty. Like us, they are interested in the

impact of model uncertainty on optimal portfolios in a setup with stochastic volatility. However,

because they assume constant model uncertainty, their setup is not suited to study the joint dynamics

of volatility, uncertainty, and their disconnect on the optimal portfolio decision. Moreover, they do

not study asset prices in equilibrium and their main focus is on the marginal impact of model

uncertainty on investors’ hedging demands, which they find to be very low.

Brenner and Izhakian (2018) study the joint impact of risk and (ambiguity) uncertainty on the

equity premium. While the research question they ask is related to ours, they consider a very

different framework. First, their measure of uncertainty is independent of risk by construction.

6Gallant et al. (2019) show that in several model specifications, including the one used by Jahan-Parvar and Liu

(2014), having model uncertainty as a feature of the model provides a better empirical asset pricing fit.
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Accordingly, their setup would not allow to study time-varying levels of disconnect between volatility

and uncertainty, which is central in our paper. Second, while we let the representative investor

be averse to both risk and uncertainty, Brenner and Izhakian (2018) allow for the investor to be

ambiguity loving in some states of nature. Finally, while they evaluate the joint impact of uncertainty

and volatility in the equity premium as we do, they are silent about return predictability and portfolio

performance, which we analyze in detail.

Drechsler (2013) considers a general framework with stochastic model uncertainty, stochastic

volatility and jumps. His model differs from ours in at least two dimensions. First, his focus is on

reproducing the empirical properties of index options and the variance premium, while our focus is

on stock excess return predictability and the characterization of asset prices, especially in periods of

high disconnect between uncertainty and volatility. Second, we go beyond equilibrium asset pricing

properties, and consider a regression-based portfolio approach to evaluate how the predictions from

our model affect portfolio performance, and find that our model’s stock excess return predictability

significantly increases portfolio performance in and out of sample.

The rest of the paper is organized as follows. Section 2 sets up the model, in which volatility

and uncertainty are potentially disconnected. Section 3 solves for the optimal consumption and

portfolio allocation taking prices as given. Section 4 solves for the equilibrium asset prices’ dynamics,

including the conditional equity premium and risk-free rate. Section 5 describes the data and our

empirical analysis. Section 6 evaluates the performance of our model’s implied portfolio strategy in

the full sample and in specific high-disconnect regimes. Section 7 shows that our results also hold

out-of-sample. Section 8 concludes. The Appendix contains technical material and proofs of the

propositions in the paper.

2. A framework with volatility and uncertainty disconnected

We consider an infinite-horizon expected-utility maximization problem where a representative in-

vestor chooses his consumption level and allocates his funds between a risk-less and a risky asset,

which exhibits stochastic volatility. For this purpose, the investor employs a benchmark or refer-

ence model that represents his best estimate of the risky asset’s dynamics. However, the investor

fears that the model he uses is potentially incorrect, and worries that the true model could lie in a

set of alternative models that are statistically difficult to distinguish from the reference model. To

cope with model uncertainty, we show in Section 3 that the investor chooses optimal consumption

and portfolio holdings that are robust across the set of alternative models. This is equivalent to

optimizing assuming the worst-case model in the alternative set.
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The size of the set of alternative models determines model uncertainty. When the bound is

large (respectively, small), alternatives that are statistically far from the reference model will fall

below (respectively, above) the bound, and the investor will face high (respectively, low) uncertainty

about the reference model. A key contribution of our paper is that we generalize the size of the

set of alternative models. We first let stochastic volatility affect it, that is, model uncertainty is

higher when there is higher volatility and vice versa. To avoid perfect correlation between model

uncertainty and volatility, however, we introduce an additional stochastic process which drives the

degree of connection between uncertainty and volatility. This setup allows us to study market

scenarios in which, simultaneously, uncertainty can be potentially high while volatility is low and

vice versa: those are the “HL” and “LH” regimes characterized in Figure 1. In the rest of this section

we formalize this modeling framework.

2.1 The reference model

Assume a complete, filtered probability space (Ω,F ,P) satisfying the usual assumptions, where P
denotes the reference probability measure that represents the investor’s best estimate of the risky-

asset dynamics. We consider a Lucas-tree economy (see Lucas (1978)) with a single risky asset with

price St and a risk-free asset with price Bt. The risky asset is a perpetual claim on the stream of

aggregate dividends Dt. The dynamics of dividends, asset prices, and stock return volatility under

the reference probability measure are

dDt

Dt
= µDdt+ σDvtdW

D
t , (1)

dBt
Bt

= rf,tdt, B0 > 0, (2)

dSt
St

=

(
µS,t −

Dt

St

)
dt+ σSvtdW

S
t , S0 > 0, (3)

dvt = κv(θv − vt)dt+ σvvtdW
v
t , v0 > 0, (4)

where µD and σD are constant parameters, rf,t is the risk-free rate, and µS,t is the expected total

return of the risky asset. vt is the stochastic volatility of stock return and dividends growth, which

follows an SV-GARCH diffusion where κv, θv, and σv denote the speed of mean reversion, the long-

run level, and the volatility of volatility, respectively.7 The Brownian motions WS
t and W v

t are

correlated with correlation coefficient ρSv ∈ [−1, 1], so that E[dWS
t dW

v
t ] = ρSvdt.

8

7The choice of the SV-GARCH diffusion process for volatility is essentially without loss of generality for a logarith-

mic investor, and has no effect on any of our main theoretical or empirical results.
8We will show that in equilibrium the stock price is proportional to dividends, so that WD

t = WS
t ∀t.
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2.2 Alternative models

This subsection describes the alternative models considered by the representative investor, while the

next subsection restricts to a subset of alternative models that are statistically close to the reference

model.

A model is characterized by its probability measure. In the previous subsection we defined the

probability measure P associated to the reference model. Consider now an alternative model of the

stock return characterized by the probability measure Pϑ, where ϑ is the change from the reference

measure P to the alternative measure Pϑ such that for any Ft-measurable random variable Z and

T > t we can write

Eϑ [ZT | Ft] = E
[
ϑT
ϑt
ZT

∣∣∣∣Ft] . (5)

The investor considers alternative models of the form:9

dSt
St

=

(
µS,t −

Dt

St
+ σSvtht

)
dt+ σSvtdW

S,ϑ
t . (6)

The dynamics in Equation (6) represent a perturbation of the reference model in Equation (3).

Comparing these two equations, we note that the process WS,ϑ
t is also a Brownian motion, but

now under the alternative probability measure Pϑ. In addition, the drift of the stock return is now

perturbed by the new term σSvtht, driven by both stochastic volatility vt and the drift perturbation

ht. Equations (3) and (6) imply that the Brownian motions under the reference and alternative

measures and the drift perturbation are related by

dWS
t = dWS,ϑ

t + htdt, (7)

and from Girsanov’s theorem we can determine that the change from the reference to the alternative

measure is given by the exponential martingale:

ϑt = exp

{∫ t

0
hsdW

S
s −

∫ t

0

h2
s

2
ds

}
, (8)

with dynamics
dϑt
ϑt

= htdW
S
t . (9)

Each alternative model considered by the representative investor from the class of models in Equation

(6) is characterized by a specific change of measure ϑt. As we will show in the next subsection, the

change of measure ϑt is key in restricting the general set of alternative models to the set of those

that are statistically difficult to distinguish from the reference model.

9A similar perturbed equation for the dividend process is omitted for brevity. Since the stock price will be propor-

tional to dividends in equilibrium, adding that equation here does not seem essential.
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2.3 The size of the alternative set of models

We use relative entropy to measure the “distance” between the reference model and the alternative

models. Accordingly, we restrict the representative investor’s set of alternative models to those that

are statistically close to the reference model by imposing an upper bound on the growth rate of the

alternative model’s relative entropy. The growth in entropy of Pϑ relative to P over the time interval

[t, t+ ∆t] is defined as

G(t, t+ ∆t) ≡ Eϑt
[
log

(
ϑt+∆t

ϑt

)]
, (10)

and the instantaneous growth rate of relative entropy at time t is then given by

R(ϑt) ≡ lim
∆t→0

G(t, t+ ∆t)

∆t
=

1

2
h2
t , (11)

where the last equality is proven in Appendix A.1. When ht = 0 the relative entropy growth rate

is zero and this corresponds to the reference model. As ht increases, so does the growth in relative

entropy. Taken together, equations (7) and (11) establish a close relation between the growth in

relative entropy and the distance between the probability measure of the reference model P and the

probability measure of the corresponding alternative model considered Pϑ. Furthermore, the set of

alternative models can be restricted by imposing an upper bound in its relative entropy growth.

The upper bound on entropy determines model uncertainty. When the bound is large (respectively,

small), alternatives that are statistically far from the reference model fall below (respectively, above)

the bound, and the investor faces high (respectively, low) uncertainty about the reference model.

The admissible set of alternative models is bounded from above by stochastic model uncertainty

Ut as follows {
ϑt : R(ϑt) ≤

1

2
ε2U2

t

}
, (12)

where the constant parameter ε measures the investor’s degree of uncertainty aversion. When ε = 0

the set of alternative models is empty and the investor has full confidence in the reference model.

By contrast, an investor with higher ε expands the set of alternative models to include models that

are statistically further away from the reference model.

2.4 Introducing disconnect

An important contribution of our paper is that we characterize model uncertainty as the product of

stochastic volatility vt with a “disconnect” stochastic process ηt, that can potentially drive a time-

varying wedge between volatility and uncertainty. That is, we posit the following specification for

model uncertainty

Ut = ηtvt. (13)
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This specification is motivated by the empirical relation between volatility and uncertainty observed

in Figure 1, showing that while volatility and uncertainty are in general positively correlated, there

are situations in which one of them is significantly higher than the other, or they are disconnected.

The stochastic process ηt is normalized to have mean one and measures the degree of disconnect.

This normalization is for ease of interpretation of the level of disconnect relative to its mean: when

ηt is far away from one there is high disconnect between uncertainty and volatility, and when ηt is

close to one disconnect is low.

Rewriting Equation (13) we have

ηt =
Ut
vt
, (14)

so high levels of ηt capture situations in which the economy is in the “HL” regime, characterized by

high uncertainty and low volatility, while low levels of ηt are observed when the economy is in the

“LH” regime, characterized by low uncertainty and high volatility. By contrast, in the two connected

regimes “HH” and “LL”, ηt tends to be away from extreme values, and closer to its normalized mean

value set to 1. Of course, the variables in Equation (14) are continuous so the notion (and number) of

discrete regimes is simply a convenient low-dimensional representation of the investment environment

that is useful for interpretation and aggregation, but plays no formal role in the analysis of the model.

To fully specify the model, we assume that ηt is a positive process that, like vt, follows a SV-

GARCH diffusion

dηt = κη(θη − ηt)dt+ σηηtdW
η
t , (15)

where κη, θη, and ση denote the speed of mean reversion, the long-run level, and the volatility

of disconnect, respectively.10 Disconnect and volatility are correlated with correlation coefficient

ρηv ∈ [−1, 1], so that E[dW η
t dW

v
t ] = ρηvdt. Since volatility is correlated with the stock price,

it follows that disconnect and the stock price are also correlated. Their correlation coefficient is

ρSη ∈ [−1, 1], and hence E[dWS
t dW

η
t ] = ρSηdt.

3. Optimal portfolio allocation in partial equilibrium

To solve the investor’s objective problem, we employ standard dynamic programming optimization

techniques subject to the relative entropy growth constraint, that captures the notion that the in-

vestor would like to obtain optimal consumption and investment policies that are robust to model

10As it was the case with volatility, the choice of the SV-GARCH diffusion process to model disconnect is essentially

without loss of generality in the case of a logarithmic investor, and has no effect on any of our main theoretical or

empirical results.
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uncertainty. We solve the resulting robust Hamilton-Jacobi-Bellmann (HJB) equation under in-

equality constraints using the Lagrangian method. We then derive the optimal robust solution to

the investor’s investment and consumption problem in closed form.

Let Xt denote the investor’s wealth and ωt be the percentage of wealth (or portfolio weight)

invested in the risky asset; with 1 − ωt is invested in the risk-free asset. The investor consumes at

an instantaneous rate Ct and assumes the risky asset evolves according to the dynamics specified in

Equation (6). Accordingly, the dynamics of investor’s wealth Xt follow

dXt = ωtXt

(
dSt +Dtdt

St

)
+ (1− ωt)Xt

dBt
Bt
− Ctdt

= (Xt [rf,t + ωt (µS,t − rf,t + σSvtht)]− Ct) dt+ ωtXtvtσSdW
S,ϑ
t , (16)

starting from an initial endowment X0 > 0. Conditional on a specific probability measure Pϑ, the

investor derives logarithmic utility from consumption with subjective discount rate β > 0, and solves

the infinite horizon problem

sup
{Cs,ωs}t≤s<∞

inf
{hs}t≤s<∞

Eϑt
[∫ ∞

t
e−βs log(Cs)ds

]
, (17)

subject to the entropy growth constraint in Equation (12) and the wealth dynamics in Equation

(16). In partial equilibrium, the investor solves this problem taking the dynamics of asset prices as

given. The investor’s desire for robustness against model uncertainty is incorporated by evaluating

the future evolution of the economy under the worst-case alternative model within the admissible

set specified in Equation (12). Accordingly, to the extent that the drift perturbation ht characterizes

the change of measure Pϑ (see Equation (9)), the minimization is done over the set of changes of

measure from the reference to each alternative model.

Define the value function

V (Xt, vt, ηt) = sup
{Cs,ωs}t≤s<∞

inf
{hs}t≤s<∞

Eϑt
[∫ ∞

t
e−βs log(Cs)ds

]
, (18)

associated with the optimal stochastic robust control problem in Equation (17). The perturbed

Hamilton-Jacobi-Bellman (HJB) equation characterizing the optimal solution is

0 = sup
{Ct,ωt}

inf
{ht}

{
log(Ct) +

∂V

∂X
(Xt [rf,t + ωt (µS,t − rf,t + σSvtht)]− Ct)

+
1

2

∂2V

∂X2
v2
tX

2
t σ

2
Sω

2
t +

∂V

∂v
κv(θv − vt) +

1

2

∂2V

∂v2
σ2
vv

2
t +

∂V

∂η
κη(θη − ηt) (19)

+
1

2

∂2V

∂η2
σ2
ηη

2
t +

∂2V

∂X∂v
ωtXtρSvσSσvv

2
t +

∂2V

∂X∂η
ωtXtρSησSσηηtvt +

∂2V

∂η∂v
ρηvσησvηtvt

}
,
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subject to:11

R(ϑt) =
1

2
h2
t ≤

1

2
ε2U2

t . (20)

The robust optimal control problem is solved in two steps. First, the investor chooses a worst-case

drift perturbation h∗t . Second, the investor selects the optimal consumption and portfolio holdings

that maximize his expected utility of consumption under the worst-case model. The solution for the

optimal robust policies is characterized in the following proposition.

Proposition 1. The optimal consumption, drift perturbation, and portfolio policy are given, respec-

tively, by

Consumption : C∗t = βXt. (21)

Perturbation : h∗t = −εUt = −εηtvt. (22)

Portfolio weight : ω∗t =
µS,t − rf,t
σ2
Sv

2
t︸ ︷︷ ︸

reference demand

− ε

σS
ηt︸ ︷︷ ︸ .

uncertainty correction

(23)

The investor’s optimal consumption is a constant fraction of wealth equal to the subjective

discount rate β, which is a standard result with logarithmic utility. The optimal drift perturbation

h∗t is negative, and driven by the product of uncertainty aversion and model uncertainty.12 Because

model uncertainty is the product of stochastic disconnect and volatility, for a given level of uncertainty

aversion, the drift adjustment can be high even when volatility is low, if there is high disconnect (HL

regime). The second term in the demand function for the risky asset in Equation (23) represents

the adjustment made by the investor to his portfolio holdings in the presence of disconnect. It is

negative and increasing in magnitude in the investor’s degree of uncertainty aversion and in the level

of disconnect. The correction term is largest when ηt is largest, that is, in the HL regime where

uncertainty is significantly higher than volatility, and lowest when ηt is lowest, i.e., in the LH regime

characterized by uncertainty being significantly lower than volatility. In general equilibrium, the

equity premium will adjust to induce the investor to nevertheless hold the risky asset. For this to

happen, the equity premium must be relatively higher in the HL regime and lower in the LH regime,

which turn out to be key predictions of the model that we verify empirically.

11It can be shown that, under mild regularity assumptions, the solution we provide satisfies the transversality

condition: limt→∞ Eϑ [V (t,Xt, ηt, vt)] = 0. A formal proof of this sufficient condition is available from the authors

upon request.
12While in principle there are two roots for the solution of h∗t = ±εUt, we focus on the realistic solution with

h∗t = −εUt < 0, which prevails when the expected return of the risky asset under the reference measure is positive.
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4. Equilibrium asset prices

Given the optimal demand for the assets expressed by the investor, we now solve for the equilibrium

asset prices. An equilibrium is a specification of the dynamics of the risky and risk-less asset prices,

including µS,t = µS (vt, ηt) and rf,t = rf (vt, ηt), combined with a set of optimal robust consumption

and investment policies that support continuous clearing in the markets for the consumption good

and the risky asset:

Ct = Dt, (24)

ωt = 1. (25)

The next proposition characterizes the equilibrium risk-free rate rf,t and the conditional equity

premium under the reference measure, which can be expressed as

1

dt
Et
[
dSt +Dtdt

St

]
− rf,t = µS,t − rft, (26)

given the dynamics for the stock price in Equation (3).

Proposition 2. In equilibrium, the price-dividend ratio is St/Dt = 1/β. The equilibrium equity

premium under the reference measure P and the risk-free rate are given, respectively, by

Equity premium : µS,t − rf,t = σ2
Dv

2
t + εσDηtv

2
t . (27)

Risk-free rate : rf,t = β + µD − σ2
Dv

2
t − εσDηtv2

t . (28)

We therefore find that the equity premium and risk-free rate are time-varying and non-linear

functions of volatility and disconnect. In particular, the uncertainty term embedded in disconnect

generates a flight-to-quality-like correlation among asset returns. In periods of increasing uncertainty

(increasing disconnect, for a given level of volatility) the demand for the risky asset decreases and the

demand for the safe asset increases. Accordingly, in periods of increasing uncertainty the investor

requires a higher equity premium to hold the risky asset, and is willing to accept a lower risk-free

rate to hold the risk-less asset in equilibrium. The presence of stochastic volatility may amplify

or diminish these effects depending on whether it is connected or disconnected from uncertainty,

respectively. In the following sections, we show that the fact that both volatility and disconnect

jointly drive asset prices help make our model consistent with the observed dynamics of asset prices,

including during high-disconnect episodes.

The structure of the equilibrium equity premium and risk-free rate can be also understood in

the context of the optimal portfolio policy obtained in Proposition 1. The negative uncertainty

correction implies that the representative investor is more conservative and prefers to hold less of the

13



risky asset and more of the risk-free asset compared to a reference investor. In general equilibrium,

the investor must allocate all his wealth to the risky asset (see Equation (25)). Therefore, the last

term in the equity premium boosts up the reward from holding the risky asset just enough so that

the investor optimally chooses to allocate all his wealth to the risky asset. By the same token, the

risk-free rate has to decrease in general equilibrium, so the investor optimally chooses not to hold

the risk-free asset at all.

5. Empirical analysis

5.1 Data

The S&P 500 (logarithmic) returns including dividends obtained from the CRSP database serve as a

proxy for the risky-asset return.13 The risk-free rate is the three-month (constant maturity) Treasury

bill rate, which we obtain from the Fred St. Louis Database (Ticker “DGS3MO”). Both series are

available at the daily frequency from January 1, 1986 until December 31, 2020; we aggregate them

to the weekly frequency.

We construct our weekly measure of uncertainty Ut using the daily news-based economic policy

uncertainty (EPU) index developed by Baker et al. (2016).14 The daily EPU index is constructed

by counting in the archives of well over one thousand US newspapers the number of articles that

contain at least one term related to economic policy uncertainty from the following list: “uncertain,”

“uncertainty,” “economic,” “economy,” “Congress,” “deficit,” “Federal Reserve,” “legislation,” “reg-

ulation,” and “White House.” The daily EPU time series is volatile, and we smooth it by computing

its moving average over the past week (5 trading days) to construct the uncertainty measure we use

at the weekly frequency.

The diffusive term of the stock price process is σS,t := σSvt where σS = 1, since we match vt

to the square root of realized variance, which is computed daily from aggregated intraday returns

sampled at five minutes frequency (78 observations per trading day). To obtain a weekly measure of

realized variance, we sum the daily realized variance estimates. Based on the definition of disconnect

in Equation (14), we construct an empirical proxy for ηt at the weekly frequency by computing the

ratio of uncertainty as measured by EPU to realized volatility, and we then normalize this ratio to

have an average value over the full sample equal to one.

13Center for Research in Security Prices, CRSP US Stock Database, Wharton Research Data Services, https://wrds-

www.wharton.upenn.edu/pages/about/data-vendors/center-for-research-in-security-prices-crsp/.
14Section 5.3 below shows that our results continue to hold when considering alternative empirical measurements of

uncertainty.
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INSERT TABLE 1 HERE

Table 1 summarizes key asset pricing moments (including uncertainty, volatility, and disconnect)

for the full sample and for three high-disconnect sub-periods over which we will examine in more

detail the performance of the model: the financial crisis (from July 2007 until March 2009), the US

2016 election (from July 2016 until January 2018), and the Covid-19 pandemic (from January 2020

until December 2020). Over the full sample, the average stock excess return is 7.7%, with a relatively

high level of the average risk-free rate compared to recent values. Given the paths of uncertainty

Ut and volatility vt, our normalized measure of disconnect ηt has an average value of 1 over the full

sample by construction.

Compared to the full sample results, during the financial crisis period the average stock excess

return was extremely negative (-33.4%) and both volatility and uncertainty were very high. However,

despite a very high level of average uncertainty (about 30% higher than in the full sample), the

extremely high level of average volatility (about 60% higher than in the full sample) implies this is

a high-disconnect period, with average level of disconnect about 40% lower than in the full sample.

The period surrounding the US 2016 election was characterized by a higher average stock excess

return (more than double its level in the full sample) and significantly lower average volatility, with

slightly lower average uncertainty. Even though average uncertainty in this period was relatively

close to its full-sample average (only about 15% lower than in the full sample), because average

volatility was extremely low during this period (about 40% below its average level in the full sample)

this is a high-disconnect period, with average level of disconnect about 30% higher than in the full

sample.

Finally, the Covid-19 period was characterized by high average stock excess returns, similar to

those around the US 2016 election, but with considerably higher average volatility and uncertainty.

Despite the extremely high level of average volatility, comparable to the one observed during the

financial crisis, the even more extreme level of average uncertainty (close to 3 times its level in the

full sample) implies that this is a high-disconnect period, with average level of disconnect about

50% higher than in the full sample. While disconnect was on average high during the Covid-19 sub-

period, it fluctuated over time, mainly driven by volatility. Initially, disconnect declined sharply due

to a high spike in volatility in March 2020, while stock prices dropped. Subsequently, it recovered

and reached very high levels, as volatility declined in the following months, while financial markets

recovered. Meanwhile, uncertainty remained high during most of the Covid-19 period.

INSERT FIGURE 2 ABOUT HERE

15



In Figure 2, we plot the time series of volatility and uncertainty, as well as the resulting disconnect

process. From Panel A, we observe that uncertainty is substantially more volatile than volatility: the

standard deviation of the EPU index is 50.1% compared to only 7.3% for realized volatility. While

less volatile, realized volatility is more persistent than uncertainty: the first order autocorrelation of

volatility is 0.87, compared to 0.74 for the EPU index. In Panel B, we plot the associated normalized

disconnect time series. Since it is constructed as a normalized ratio of uncertainty and volatility,

it is also volatile and persistent. The shaded areas in the charts mark the three high-disconnect

periods described above: the financial crisis, the US 2016 election, and the Covid-19 pandemic. High

disconnect occurs whenever ηt is far away from 1.

Consistent with Figure 1, the correlation between volatility and uncertainty is only 0.44: while the

two series comove on average, they are often disconnected. Regressing uncertainty on volatility and

a constant yields an adjusted R2 of 25%. Therefore, 75% of the time-series variation in uncertainty

cannot be explained by volatility—the gap which we attribute to disconnect in the model.

5.2 Equity premium and risk-free rate in different regimes

Proposition 2 implies that the equity premium and the risk-free rate are specific functions of vt and

ηt. While these variables are continuous in the model, and we will analyze them as such, it is useful

for interpretation purposes to start by thinking in terms of discrete regimes corresponding to ranges

of values: High volatility with high uncertainty (HH), high volatility with low uncertainty (HL), low

volatility with high uncertainty (LH), and low volatility with low uncertainty (LL), as described in

Figure 1. For the purpose of this discussion, “high” and “low” are defined based on threshold levels

for vt and ηt, given by their respective mean plus one half of their standard deviation:15 observations

above (respectively, below) the threshold level are “high” (respectively, “low”).

Table 2 reports the average stock market excess return and risk-free rate at the two-week horizon

in each regime. It also shows the estimated unconditional probability of being in each regime.

INSERT TABLE 2 ABOUT HERE

The most frequent regime is LL (both volatility and uncertainty are low, ηt close to one), and

is empirically characterized by a high average risk-free rate and a low average stock excess return.

Regime HH (both volatility and uncertainty are high, ηt close to one) exhibits the lowest average

risk-free rate, and considerably higher average stock excess return than in the LL regime. Moving on

to the disconnected regimes, we find that the average stock excess return is highest in the HL regime

15The analysis presented here is robust to alternative thresholds definitions, we omit the complete results for brevity.
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(high uncertainty with low volatility, high ηt) while the average stock excess return in the LH regime

(low uncertainty with high volatility, low ηt) dominates only the one in the LL regime. The empirical

results are precisely what Proposition 2 implies: the stock market provides a sizable compensation

for bearing uncertainty, especially in regimes in which uncertainty is high and disconnected from

lower volatility (HL regime, high ηt), compared to the premium earned solely for bearing volatility.

The results in Table 2 correspond to a fixed investment horizon of two weeks. Figure 3 shows

the results as the investment horizon τ ranges from 1 to 12 weeks.

INSERT FIGURE 3 ABOUT HERE

Panel A in Figure 3 plots the stock excess return for each regime as a function of the investment

horizon τ . Consistent with our results in Table 2, high-uncertainty regimes (HH and HL) deliver

high subsequent stock excess returns for all the horizons considered. The stock excess return in

low-uncertainty regimes (LL and LH) are also positive for most horizons (with the only exception for

τ = 12 in the LH regime), but they are significantly lower in magnitude compared to those achieved

in high-uncertainty regimes. To incorporate the volatility dimension in the comparison, Panel B plots

the Sharpe ratios, obtained by scaling the average realized stock excess returns by their respective

standard deviation. By this metric, the HL regime achieves the highest performance for most horizons

(with the only exception being for τ = 11 weeks), outperforming the results achieved in regime HH.

It then follows that, while high-uncertainty regimes offer a high subsequent stock excess return in

general (Panel A), regimes with high uncertainty and simultaneous high volatility deliver subsequent

more volatile excess returns, leading to investments in regime HL outperforming those in regime HH

for any risk-averse investor (Panel B). This is a consequence of volatility persistence (as discussed

above, volatility is highly persistent, and in particular more persistent than uncertainty). Finally,

Panel C plots the risk-free rate across regimes; the results are also consistent with the evidence

contained in Table 2 and with the prediction of Proposition 2. For instance, the risk-free rate

is lower during high-uncertainty regimes (HH and HL), and is highest in the most likely regime

characterized by low uncertainty and low volatility (LL).

Next, we examine the predictions of the model contained in Proposition 2 by regressing both

the conditional equity premium and risk-free rate on the variance (v2
t ) and uncertainty term (v2

t ηt),

using the continuum of their values and without distinguishing discrete regimes. Figure 4 shows the

results of those regressions.

INSERT FIGURE 4 ABOUT HERE

We start describing the impact of volatility and uncertainty on the stock excess return, shown
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in the left panels of Figure 4. Panel A reports the estimated coefficient from regressing the stock

excess return on realized variance (v2
t ) only, with the shaded area representing a 95% confidence

interval. It shows that there is a positive albeit insignificant relationship between the stock excess

return and its volatility. In Panel C we do a similar analysis, but adding the uncertainty term (v2
t ηt)

to the regression, as required by Proposition 2. We obtain that both volatility and the uncertainty

term are statistically significant at the 5% level (except for short horizons up to two weeks). The

estimated regression coefficient for the volatility term is negative, in line with the leverage effect. For

the uncertainty term, however, the sensitivity is positive and consistent with the model’s prediction.

Panel E shows that our model including both volatility and uncertainty delivers a substantially higher

(in-sample) adjusted R2.

Moving on to the impact of volatility and uncertainty on the risk-free rate, we report the results

in the panels on the right side of Figure 4. Panel B reports the estimated coefficient from regressing

the risk-free rate on realized variance (v2
t ) only, with the shaded area representing a 95% confidence

interval. It shows that there is a significantly negative relationship between the risk-free rate and

the stock return volatility, which is consistent with our result in Proposition 2. In Panel D we do a

similar analysis, but adding the uncertainty term (v2
t ηt) to the regression, as required by Proposition

2. We obtain a significantly negative relationship between the risk-free rate and uncertainty, while

volatility becomes insignificant. This shows that uncertainty is the main driver of the risk-free rate,

and it has a negative sign consistent with our result in Proposition 2. Finally, Panel F shows that our

model including both volatility and uncertainty delivers a substantially higher (in-sample) adjusted

R2 for the risk-free rate.

It is clear from our results that uncertainty plays a prominent role in characterizing both the

equity premium and the risk-free rate. One possible interpretation is through the lens of a flight-to-

quality-like effect. In periods of high uncertainty the demand for risky assets decreases and investors

require a higher equity premium to hold the risky asset. Similarly, in periods of high uncertainty the

demand for safe assets increases, and their required return declines accordingly. This is consistent

with uncertainty been positively related to the equity premium and negatively related to the risk-

free rate as indicated by Proposition 2, a relation for which we find empirical validation in the data.

By contrast, our empirical analysis shows that volatility affects stock excess returns mainly via the

leverage effect, and has a negligible impact on the risk-free rate.

Our results on the impact of volatility and uncertainty on the equity premium help explain

the challenges faced by previous empirical studies trying to establish a risk-return trade-off using

volatility alone as a measure of risk. Comparing panels A and C, it appears that volatility as the

sole state variable struggles to generate the variation in the equity premium that is present in the

data; the effect of volatility on excess returns in the data is not as clear cut as standard financial
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theory suggests. By averaging periods when the trade-off between volatility and return works in

the expected direction with periods when it does not, the regression in Panel A ends up with a still

positive, but barely significant effect. Once we include both volatility and uncertainty in Panel C,

volatility is no longer tasked with playing this dual role and we obtain a clean separation of the effect

of volatility (negative) and uncertainty (positive) on the equity premium.

Summing up, we find fairly strong support in the data for the model’s predictions as given in

Proposition 2, most notably the important impact of uncertainty, with the provision that volatility

has a negative effect on the equity premium and a negligible effect in the risk-free rate.

5.3 Robustness to alternative measurements of uncertainty

As explained in Section 5.1, we construct our weekly measure of uncertainty Ut using the daily

economic policy uncertainty (EPU) index of Baker et al. (2016). In this section, we summarize the

results obtained using alternative possible measures of uncertainty.

Different approaches to measure uncertainty have been employed in the literature (see Cascaldi-

Garcia et al. (2021) for a survey). Several papers consider the newspaper-based methodology of

Baker et al. (2016), but with a different selection of words in order to target different types of uncer-

tainty. For example, Husted et al. (2021) select words related to measure more specifically monetary

policy uncertainty, while Caldara and Iacoviello (2019) consider a list of words tailored to identify

geopolitical uncertainty. Moreover, besides the news-based component used in its daily version, the

monthly frequency EPU index from Baker et al. (2016) contains two additional components added

to gauge uncertainty regarding the federal tax code (by counting the number of federal tax code pro-

visions set to expire in future years) and to quantify the disagreement among economic forecasters.16

The monthly EPU has been further disentangled into several sub-indexes of specific categories, with

words lists associated to each of them.17 The categories are: economic policy, monetary policy, fiscal

policy, taxes, government spending, health care, national security, entitlement programs, regulation,

trade policy, and sovereign debt and currency crises. Finally, Baker et al. (2021) construct Twitter

economic uncertainty indicators, and show they behave similar to the newspaper-based EPU index.

There are several alternative approaches which measure uncertainty without relying on text anal-

ysis from newspapers. Scotti (2016) uses macroeconomic news and survey forecasts to construct an

ex-post realized measure of uncertainty about the state of the economy. In contrast to sentiment-

16In addition, the news-based component is different from the one used in the daily series. For the monthly frequency,

the focus is only on ten major US newspapers, and the word search is more specific.
17For example, articles that fulfill the requirements to be coded as EPU and also contain the term “Federal Reserve”

would be included in the monetary policy uncertainty sub-index.
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based uncertainty measures that rely on analysts’ forecasts, Jurado et al. (2015) construct a monthly

index of macroeconomic uncertainty as an aggregate volatility of statistical forecasts for hundreds of

economic series. In turn, Izhakian (2020) defines ambiguity as probability perturbations (uncertain

probabilities) and aversion to ambiguity as aversion to the mean-preserving spreads in these proba-

bilities. He then constructs an uncertainty measure based on the expected volatility of probabilities

across the relevant events.

To make sure our results are not driven by the specific uncertainty measure we use, we reproduced

the same analysis that led to the construction of Figure 4 for all the uncertainty measures described

in this subsection. Despite these measures being constructed very differently, and being available

at varying frequencies ranging from daily to monthly frequency, we find the results highlighted in

Figure 4 are broadly consistent for all the measures considered, with the main caveat that some

monthly measures tend to lead to less statistically significant results, as expected given the lower

number of observations available. The robustness of our results to several empirical measurements

of uncertainty is not surprising given that several uncertainty measures are positively correlated and

share an element of countercyclicality, as reported by Kozeniauskas et al. (2018).

All the alternative uncertainty measures we considered are not constructed as measures of risk

premia, as otherwise the uncertainty measures used would most likely be correlated by construction

with the equity premium due to the strong co-movement of all risk premia. For example, given that

we use realized volatility as our volatility measure, the VIX would not be a desirable uncertainty

measure. This is because the marginal contribution of VIX to explain the equity premium would be

its difference with realized volatility, which is the square root of the variance risk premium.18

We conclude that our results are robust to several alternative measurements of uncertainty, and

hence are most likely not driven by our specific choice of the daily EPU index to construct our weekly

uncertainty measure.

6. Disconnect-managed portfolios

As shown in Equation (25), the equity market clearing condition implies that in equilibrium the

robust representative investor follows an unconditional or passive strategy by investing all his wealth

18Bollerslev et al. (2009) construct a model in which both the volatility and the volatility-of-volatility of consumption

growth rate drive the equity premium. They proxy the latter using the variance risk premium and show empirically

that it is able to predict the stock excess return. In contrast to their paper, our theory considers model uncertainty

rather than volatility-of-volatility of consumption growth rate (which is constant in our model). Empirically, we refrain

from using risk premia to predict the equity premium, and consider instead uncertainty measures, consistent with our

modeling framework.
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in the risky asset. By contrast, a reference investor who does not face model uncertainty but posits

that the equity premium is a function of volatility and uncertainty as suggested by our model in

Proposition 2 would follow an active strategy conditioning in both volatility and uncertainty. A third

alternative is an investor who disregards the role of uncertainty and posits that the equity premium is

a function of volatility only, corresponding to an alternative active strategy conditioning on volatility

only.19 In this section we characterize each of these portfolio strategies following a regression-based

approach and compare their relative performance.

The equity premium implied by our model in Proposition 2 is:

ERPt = µS,t − rf,t = v2
t + εηtv

2
t . (29)

Therefore, a forecast for the equity premium can be obtained from the regression

re,t+τ := rt,t+τ − rf,t,t+τ = β0 + βvv
2
t + βηηtv

2
t + εt+τ , (30)

for any horizon τ . Estimating this equation via OLS we obtain

r̂e,t+τ = β̂0 + β̂vv
2
t + β̂ηηtv

2
t , (31)

where r̂e,t+τ represents the estimated equity premium at horizon τ .

Plugging this expression into the optimal policy of a standard logarithmic investor who does

not face model uncertainty, gives us an optimal active portfolio strategy that conditions on both

volatility and uncertainty:

ω̂∗t =
µS,t − rf,t

v2
t

=
β̂0

v2
t

+ β̂v + β̂ηηt. (32)

To consider an alternative active strategy conditioning on stochastic volatility exclusively, we

re-estimate Equation (30) but regressing on the volatility term only. For the portfolio performance

analysis, we multiply the estimated portfolio weights in Equation (32) by a constant L = 0.15,

which is set to make both dynamic portfolio strategies on average about 100% invested in the index.

This is for ease of comparison with our benchmark representative passive investor subject to model

uncertainty, who allocates all his wealth to the risky asset.

We now turn to comparing portfolio strategies over the full sample, and over the sub-periods

representing different volatility and uncertainty regimes. We compare an unconditional or passive

indexing strategy, ωIt = 1, a portfolio strategy in which the stock excess return is obtained by

conditioning on volatility only, and a portfolio strategy in which the stock excess return is obtained

conditioning on both volatility and uncertainty.

19Our model includes this special case, which arises when the representative investor is not averse to uncertainty

(ε = 0).
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We highlight that all the portfolio comparisons in this section correspond to a full in-sample

analysis with the advantage of hindsight. In other words, we back-test all the portfolio strategies

considered. In Section 7, we show that adding uncertainty as a predictor of future stock excess return

improves forecast accuracy out-of-sample, over and above the forecast accuracy that can be obtained

by using only volatility as a predictor.

6.1 Full Sample

We start the portfolio analysis by comparing the above mentioned three different asset allocation

strategies (unconditional, conditional on volatility only, conditional on volatility and uncertainty)

over the full sample January 1986 - December 2020, at horizons of two and four weeks.20 Panels A

and B in Figure 5 plot the time series of optimal portfolio weights, while panels C and D report the

resulting cumulative wealth processes.

INSERT FIGURE 5 ABOUT HERE

The dotted black line represents the unconditional passive buy-and-hold indexing strategy, the

dashed blue line represents the active portfolio strategy conditioning on volatility only, and the

solid red line represents the active portfolio strategy conditioning on both volatility and uncertainty.

Panels A and B show that both active strategies use leverage extensively, as the portfolio holdings ωt

are very often above one. The two active portfolio strategies are correlated, consistent with the idea

that on average volatility and uncertainty are connected and hence comove. They diverge mainly in

periods of high disconnect. For example, in the period around the financial crisis characterized by

high disconnect driven by a very high level of uncertainty and an extremely high level of volatility, the

active strategy conditioning on both volatility and uncertainty was more conservative than the one

conditioning on volatility only, thereby avoiding the significant stock market losses in this period. By

contrast, in the period around the US 2016 election which was characterized by levels of uncertainty

close to average and simultaneously very low volatility (hence high disconnect), the active strategy

conditioning on both volatility and uncertainty was more aggressive than the one conditioning on

volatility only, taking advantage of the significant stock market gains during this period. Panels

C and D show that the portfolio strategy based on the model (conditioning on both volatility and

uncertainty) achieves the highest associated wealth compared to both a strategy conditioning on

volatility only and an unconditional passive indexing strategy.

We then evaluate the risk and performance of the wealth excess return associated with each

portfolio strategy. We consider the following performance statistics: (i) average excess return, (ii)

20Different horizons of up to 12 weeks deliver similar results, which we omit for brevity.
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standard deviation of the excess return, (iii) maximum draw-down
(
MDD%

)
,21 (iv) 5% Value-at-

Risk (VaR),22 (v) Sharpe ratio, and (vi) Treynor ratio. Figure 6 summarizes key return statistics for

the portfolios.

INSERT FIGURE 6 ABOUT HERE

Panel A of Figure 6 shows that the active portfolio strategy conditioning on both volatility

and uncertainty achieves higher excess return on average than the portfolio strategy conditioning on

volatility only and the unconditional passive investment strategy for all horizons. Panel B shows that

this is not due to excessive risk taking as the standard deviation of the three strategies considered

are close to one another, and none of them exhibits the lowest standard deviation across all horizons.

Panels C and D show that the portfolio strategy conditioning on both volatility and uncertainty

preserves the investor’s wealth very effectively, as it achieves the lowest maximum drawdown over

most horizons and the lowest value-at-risk in all horizons considered. Finally, panels E and F show

that the portfolio strategy conditioning on both volatility and uncertainty delivers the highest risk-

adjusted return, as it achieves the highest Sharpe and Treynor ratios for all horizons considered.

We now evaluate the alpha and beta components of the returns for each portfolio strategy. Figure

7 summarizes the results.

INSERT FIGURE 7 ABOUT HERE

Panel A in Figure 7 shows that the active portfolio strategy conditioning on both volatility and

uncertainty achieves the highest (CAPM) alpha for all horizons considered. Panel B shows that the

overall systematic risk beta is similar for both active strategies, with none of them achieving a lower

beta for all horizons considered. Interestingly, all the estimated beta coefficients are lower than one,

which indicates that the large excess returns are not driven by excessive systematic risk taking.23

21Let Wt denote the current level of wealth process and let W t := maxs∈[0,T ]Ws be its running maximum. The

drawdown at time t measures the drop of wealth from its running maximum, and is defined as Dt := W t−Wt, ∀t ≥ 0.

The maximum draw-down at time t denoted by MDDt records the worst performance that could have happened

in the past. It is defined as the running maximum of the drawdown process, given by MDDt := maxτ∈(0,t)Dτ .

Finally, to express the maximum drawdown as the highest proportional wealth loss in the past, we computeMDD% =

MDDt/W t ∈ (0, 1).
22The 5% Value-at-Risk is defined as the maximum possible loss (expressed in percentage terms) during the invest-

ment period, after excluding all worse outcomes whose combined probability is at most 5%.
23The adjusted R2 obtained from a regression of the excess return for each active portfolio strategy onto the stock

market return are 0.6 (conditioning on volatility only) and 0.5 (conditioning on volatility and uncertainty), respectively.

This implies that about half of the excess return variance of the active portfolio strategies is not driven by exposure to

the aggregate stock market.
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Finally, panels C and D show that the active portfolio strategy conditioning on both volatility and

uncertainty achieves the highest alpha for all horizons considered, whether we use CAPM (Panel A),

Fama-French three-factor (Panel C), or five-factor (Panel D) models as benchmark.

6.2 High-Disconnect Regimes

Figure 2 clearly established that there are several prominent disconnect periods in recent financial

markets history. When describing Table 1 we further characterized the main dynamics of uncertainty

and volatility in those periods, which led to them being categorized as high-disconnect regimes. In

addition, Table 2 and Figure 3 suggest that the impact of disconnect on stock excess return can

be very different depending on the relative levels of volatility and uncertainty. In this subsection,

we analyze portfolio performance from following the same three strategies implemented in Section

6.1, but focusing on specific sub-periods characterized by high disconnect: the financial crisis, the

US 2016 election, and the Covid-19 crisis. Rather than conditioning on regimes as was done for

illustrative purposes in Table 2 and Figure 3, here we condition on the continuum of volatility and

uncertainty values, as in Section 6.1.

6.2.1 Financial Crisis

We start by analyzing the 2008 financial crisis, characterized by high uncertainty and extremely high

volatility. Table 1 shows that over the two-year time period from July 2007 until March 2009 the

average stock market excess return was -33.40%. Accordingly, the excess return of wealth associated

with all portfolio strategies considered were negative around this period. For that reason, in this

subsection we refrain from using the Sharpe and Treynor ratios, as they are not straightforward to

interpret for ranking purposes when average excess returns are negative. Instead, we analyze the

average and standard deviation of wealth excess returns.

INSERT FIGURE 8 ABOUT HERE

Panels A and B on Figure 8 show that the active portfolio strategies achieve a higher terminal

wealth than the index during this sub-period. At the two-weeks horizon, the wealth evolution

associated to conditioning on volatility only is very similar to the one associated to conditioning

on both volatility and uncertainty (Panel A). However, when considering a one-month horizon, the

portfolio conditioning on volatility and uncertainty generates the highest associated level of wealth

(Panel B).

24



Panel C shows that the active portfolio strategies achieve higher excess return on average than

the passive index strategy for all horizons. However, there is no clear dominant active strategy based

on this metric, as none of them achieves the highest excess return consistently across all horizons

considered. Panel D shows that the higher excess return achieved by the active strategies is not

due to excessive risk taking, as the standard deviation of their excess return is lower than the one

associated with the passive index strategy. The standard deviation of excess return associated with

the active strategies are very similar to one another for all horizons. Panels E and F show that

the active portfolio strategies do equally well in wealth preservation, as they obtain similar levels

of maximum drawdown and value-at-risk for most horizons. By contrast, the unconditional passive

index strategy is less effective at wealth preservation, as its levels of maximum drawdown and value-

at-risk are about double their corresponding levels for its active portfolio strategy counterparts at

all horizons.

6.2.2 US 2016 election

We now consider the period surrounding the US 2016 election, from July 2016 until January 2018.

During this period, uncertainty remained relatively close to its average value while realized volatility

reached record lows. In Figure 9 we plot the wealth evolution along with risk-adjusted returns for

each portfolio strategy around the US 2016 election.

INSERT FIGURE 9 ABOUT HERE

Panels A and B show that the conditional active portfolio strategies achieve a higher terminal

wealth than the unconditional indexing strategy during this sub-period. At the two-weeks horizon the

portfolio conditioning on volatility and uncertainty generates the highest associated level of wealth

(Panel A). When considering a one-month horizon, the wealth evolution associated to conditioning

on volatility only is similar to the one associated to conditioning on both volatility and uncertainty.

Panels C and D show that the portfolio conditioning on both volatility and uncertainty achieves the

highest risk-adjusted returns in most situations (with the only exception of the one-month horizon,

in which conditioning only on volatility slightly dominates), as measured by the Sharpe and Treynor

ratios. In addition, it is worth noting that while both active strategies outperform the index, this is

partly due to the use of high leverage (the portfolio weights for the active strategies tend to be high,

sometimes above 2). Finally, panels E and F show that the active portfolio strategies would not pre-

serve the investor’s wealth effectively over this period, as they result in higher maximum drawdowns

and value-at-risk than the passive index across all horizons. Comparing the two active strategies only,

conditioning on both volatility and uncertainty does a better job at wealth preservation, achieving
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lower maximum drawdown and value-at-risk across all horizons.

6.2.3 Covid-19

Finally, we consider the recent Covid-19 pandemic crisis, characterized by extremely high volatility

(the average volatility in this period is about double the average volatility in the full sample) and

comparatively even more extremely high uncertainty (the average uncertainty in this period was

close to 3 times the average uncertainty in the full sample).

The Covid-19 pandemic triggered strong market reactions. At the peak of the crisis in mid

March 2020, stock market volatility exceeded the highest levels previously seen during the financial

crisis and caused equity markets to rapidly lose value, and then subsequently recover. This period

is particularly interesting to study within our framework, because of the different timing in the

dynamics of volatility and uncertainty. Uncertainty increased substantially in late February and

remained at very elevated levels throughout most of the sample period. By contrast, volatility

initially spiked sharply and then quickly reverted to levels closer to its full-sample mean. In terms

of our measure of disconnect, this implies ηt fell substantially in late February and early March

but then increased and stayed high for the remainder of the sample period.24 In short, around this

period the market experienced a regime transition from a more connected regime characterized by

extremely high uncertainty and extremely high volatility to a more disconnected regime characterized

by extremely high uncertainty and moderately high (but no longer extreme) volatility. In Figure 10

we collect the wealth evolution for all portfolio strategies together with a set of portfolio performance

measures. The period considered in this analysis is from January 2020 until December 2020.

INSERT FIGURE 10 ABOUT HERE

The top two panels of Figure 10 show that the portfolio conditioning on both volatility and

uncertainty performs well throughout the entire Covid-19 period. Panel A shows that, at the two-

week horizon, besides protecting the investor’s wealth at the onset of the crisis in March and April

2020, the strategy also took advantage of the subsequent recovery of equity markets by rapidly

increasing its equity portfolio share. Accordingly, at this horizon the wealth level achieved by the

portfolio conditioning on both volatility and uncertainty is the highest. Panel B shows that at

the monthly horizon the wealth evolution of the passive index and the portfolio conditioning on

both volatility and uncertainty are very similar. By contrast, for the same horizon, the portfolio

24In the context of our model, such disconnected periods arise exogenously, as would be the case with the occurence

of the Covid-19 pandemic. It is of course plausible that monetary and fiscal policy also played a role in the rapid

adjustment of volatility, leading to the high volatility of disconnect around this period.
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conditioning on volatility only achieved the lowest wealth level, incurring cumulative losses by the

end of 2020. Notably, the portfolio conditioning on both volatility and uncertainty was almost fully

invested in the equity market, compared to only half of wealth invested in equities for the portfolio

conditioning on volatility only. The high uncertainty around this period led to higher subsequent

stock excess return, and only the portfolio conditioning on both volatility and uncertainty took

advantage of this compensation for uncertainty, which the portfolio conditioned on volatility alone

could not exploit.

Panels C and D show that the portfolio strategy conditioning on both volatility and uncertainty

delivers the highest risk-adjusted return, as it achieves the highest Sharpe and Treynor ratios for

most horizons considered (all except for the monthly horizon, in which conditioning on volatility and

uncertainty delivers a risk-adjusted return similar to the one obtained by the passive index strategy).

By contrast, the portfolio strategy conditioning on volatility only obtains the worst performance in

most horizons, including negative Sharpe and Treynor ratios in some of them. Finally, panels E and

F show that the active portfolio strategies preserve wealth more effectively than the passive index

strategy, as they obtain lower maximum drawdowns and value-at-risk for most horizons (again all

except for the monthly horizon, in which the three strategies achieve very similar wealth preservation).

Meanwhile, both active portfolio strategies preserve wealth equally well; neither results in a lower

maximum drawdown or value-at-risk for all horizons.

7. Out-of-sample analysis

In Section 6, all the portfolio comparisons made were in-sample. It was a back-testing exercise,

performed with the advantage of hindsight. In this section, we examine the same three prediction

models for the equity premium, but out-of-sample. We show that adding uncertainty as a predictor

of future stock excess return improves forecast accuracy out-of-sample, compared to forecasts con-

ditioning on volatility only, or based on the unconditional average stock excess return. Because in

the context of our regression-based portfolio analysis higher stock excess return forecast accuracy

drives higher portfolio performance, the results we provide here support the notion that the higher

portfolio performance from conditioning on both volatility and uncertainty shown in Section 6 holds

also out of sample.

We start by partitioning the full sample in half. The estimation sample consists on the first half

of observations (from January 1986 until June 2003), leaving the rest of the sample for implementing

the forecasts out-of-sample.25 We run similar regressions to the one in Equation (30), with the stock

25We replicated the analysis using for the estimation sample other fractions of the full sample, including 40%, 60%,
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excess return regressed on: (i) only an intercept (unconditional model), (ii) an intercept and volatility,

and (iii) an intercept, volatility, and uncertainty. We run the regressions and make forecasts over

horizons ranging from 1 to 12 weeks. Starting from using the first half of observations in the full

sample, we update our estimation one week at a time by using a rolling expanding window.

Using the estimated regression coefficients, we go on to predict out of sample stock excess returns

over horizons τ = 1, ..., 12 weeks in the remaining observations available (starting from the July 2003

- December 2020 period). To evaluate the forecast performance we compare the ex-ante forecast of

stock excess return according to each of the three regression based models considered above with the

corresponding ex-post realized values, by means of the root mean squared error (RMSE). Table 3

shows the results.

INSERT TABLE 3 ABOUT HERE

Each column in Table 3 reports the RMSE of a forecast of stock excess return for each regression

model considered. Remarkably, the results show that the richer model (conditioning on volatility and

uncertainty) is more accurate (lower RMSE) than conditioning only on volatility, or not conditioning

at all, for all horizons considered except the one-week horizon. This establishes that the in-sample

higher performance of the conditional model based on volatility and uncertainty was not due to

overfitting in-sample.

Conditioning only on volatility does not achieve similar success. For horizons from 1 to 7 weeks,

forecasting the stock excess return conditioning on volatility is more accurate than not conditioning

at all. However, for longer horizons from 8 to 12 weeks, not conditioning provides a better forecast

than conditioning on volatility. By contrast, for all horizons considered, conditioning on volatility

and uncertainty leads to more accurate forecasts of the stock excess return than not conditioning.

Overall, our results clearly show that a forecast of stock excess return conditioning on both

volatility and uncertainty is superior to both a forecast conditioning on volatility only and a forecast

based on the unconditional mean. Since in our regression-based portfolio analysis any increase

in portfolio performance must be driven by higher accuracy in the stock excess return forecast,

our results suggest that the high portfolio performance achieved by conditioning on volatility and

uncertainty shown in Section 6 holds also out of sample.

70%, and 80%. In all cases, the results (omitted for brevity) were qualitatively the same.
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8. Conclusion

In this paper, we develop a novel and tractable framework in which an investor is averse to both

volatility and model uncertainty, which are both stochastic and possibly disconnected. We show that

in partial equilibrium both volatility and uncertainty affect the optimal consumption and portfolio

policies of the investor, and in general equilibrium both drive the equity premium and risk-free rate.

The presence of uncertainty as an additional factor in these equilibrium quantities is not exogenously

assumed; it is derived in the context of a model where the representative agent is averse to both

volatility and uncertainty. We find that allowing uncertainty and volatility to be disconnected results

in a better in-sample description and better out-of-sample forecasts.

In particular, we show that equity returns respond negatively to contemporaneous volatility

(consistent with the prevalence of the leverage effect in the data), but respond positively, and consis-

tently across horizons, to the uncertainty component in the model. Our results therefore show that

the equity premium appears to be earned for facing uncertainty, especially high uncertainty that

is disconnected from lower volatility, rather than being earned for facing volatility as traditionally

assumed.

These results have important implications for optimal portfolio allocation and asset prices. For

example, the model predicts that periods of high uncertainty are followed by subsequently higher

excess returns, which are even higher in disconnected regimes characterized by uncertainty being

significantly higher than volatility. Such disconnected periods have occurred in the data and are

often challenging for standard models to capture. Finally, we show that an investor forecasting the

stock excess return conditioning on both volatility and uncertainty as implied by our model achieves

superior portfolio performance, over and above the one achieved by conditioning on volatility only,

or by not conditioning at all.
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Appendix

A.1 Derivation of the relative entropy growth

Given the definitions of relative entropy growth and the instantaneous growth rate of relative entropy

in equations (10) and (11), we can write:

R(ϑt) :=
d

ds

∣∣∣∣
s=0

Eϑt [log ϑt+s] . (A.1)

We then compute R(ϑt) as follows:

R(ϑt) =
d

ds

∣∣∣∣
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, (A.2)

where the first equality follows from the expression for the change of measure ϑt in Equation (8), the

second one uses the relation between the Brownian motions under the reference and robust measures

in Equation (7), and the last one is an application of the Leibnitz rule of differentiation of integrals.26

A.2 Proof of Proposition 1

To find a solution of the problem in Equation (19) subject to the entropy growth constraint in

Equation (20), we formulate the Lagrangian for the constrained optimization problem:

sup
{Ct,ωt}

inf
{ht,θ}

{
log(Ct) +

∂V

∂X
[Xt(rf,t + ωt (µS,t − rf,t + vthtσS))− Ct]

+
1

2

∂2V
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2
t σ

2
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2
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κv(θv − vt) +
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vv

2
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κη(θη − ηt) (A.3)
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2
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)}
,

subject to Ct ≥ 0 and θ ≥ 0, where θ is the multiplier for the relative entropy constraint in Equation

(20).

26The Leibniz rule states that for a continuous function f , d
du

(∫ b(u)
a(u)

f(x, u) dx
)

=
∫ b(u)
a(u)

∂f
∂u
dx + f

(
b(u), u

)
· b′(u) −

f
(
a(u), u

)
· a′(u), where the functions a(u) and b(u) are both continuous and both have continuous derivatives in u.

33



Solving for the Lagrangian in Equation (A.3) leads to the following optimal policies:27

C∗t =
1
∂V
∂X

, (A.4)

h∗t = −εUt = −εηtvt, (A.5)

ω∗t = −
∂V
∂X (µS,t − rf,t + vth

∗
tσS) + ∂2V

∂X∂vt
ρSvσSσvv

2
t + ∂2V

∂X∂ηρSησSσηηtvt
∂2V
∂X2 v

2
tXtσ2

S

. (A.6)

Finally, given logarithmic preferences, we conjecture that the value function is of the form:28

V (X, η, v) =
log(X)

β
+ φ(η, v). (A.7)

Plugging this conjecture of the value function into the optimal policies in equations (A.4), (A.5),

and (A.6), respectively, leads to the expressions in the proposition.

A.3 Proof of Proposition 2

The equity premium in Equation (27) follows from combining the optimal portfolio policy in Equation

(23) with the market clearing condition for the stock in Equation (25).

The price-dividend ratio given in the proposition follows from combining the optimal consumption

policy in Equation (21) with the market clearing condition for consumption in Equation (24). In

addition, one needs to take into account that because Ct = Dt for all t, the price of a claim on the

future stream of consumption must be equal to the price of a claim on the future stream of dividends,

which implies that Xt = St.

Because the price-dividend ratio is constant, the dynamics of the stock price and dividends are

related by dSt
St

= dDt
Dt

, which implies both have the same drift and diffusion (and WD
t = WS

t ∀t).
Identifying terms using equations (1) and (3), and using the equilibrium price-dividend ratio, we get

µS,t = β + µD, (A.8)

σS = σD. (A.9)

The risk-free rate in Equation (28) follows from combining the equity premium in Equation (27)

with the stock return drift and volatility in equations (A.8) and (A.9).

27While in principle there are two roots for the solution of h∗t = ±εUt, we focus on the realistic solution with

h∗t = −εUt < 0, which prevails when the expected return of the risky asset under the reference measure is positive.
28It can be verified that this conjecture provides a solution to the problem, with φ(η, v) satisfying an ordinary

differential equation, which may be solved in closed form depending on the assumed functional form of µS,t and rf,t.
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Full Sample Financial Crisis US 2016 election Covid-19
Time Period Begin Jan. 1986 Jul. 2007 Jul. 2016 Jan. 2020
Time Period End Dec. 2020 Mar. 2009 Jan. 2018 Dec. 2020
Average stock excess return (%) 7.70 -33.40 17.29 16.97
Median stock excess return (%) 11.73 -35.70 18.97 23.96
Average risk-free rate (%) 3.20 2.02 0.67 0.38
Median risk-free rate (%) 3.14 1.77 0.54 0.32
Average uncertainty Ut 101.21 130.02 85.00 284.30
Median uncertainty Ut 84.81 106.29 78.84 257.55
Average stock return volatility vt (%) 17.70 28.16 10.51 28.94
Median stock return volatility vt (%) 11.02 15.37 7.22 18.82
Average disconnect ηt = Ut/vt (scaled) 1.00 0.59 1.29 1.49
Median disconnect ηt = Ut/vt (scaled) 0.85 0.58 1.25 1.42

Table 1: Asset pricing moments

Notes: This table presents the average and median annualized stock excess return, risk-free rate, uncertainty

(Ut), annualized volatility (vt), and disconnect (ηt). These are computed over the full sample (from January

1986 until December 2020) and during three sub-periods associated with high disconnect: the financial crisis

(from July 2007 until March 2009), the US 2016 election (from July 2016 until January 2018), and the Covid-

19 pandemic (from January 2020 until December 2020). All the data is nominal and sampled at the weekly

frequency.
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Volatility Level
High Low

Uncertainty Level
High

r̄e = 23.17%, r̄f = 1.29% r̄e = 26.33%, r̄f = 2.39%
P[HH] = 9.23% P[HL] = 10.82%

Low
r̄e = 5.56%, r̄f = 3.1% r̄e = 3.07%, r̄f = 3.62%

P[LH] = 10.36% P[LL] = 69.59%

Table 2: Stock excess return and risk-free rate in different uncertainty and volatility regimes

Notes: This table reports the estimated unconditional probability of each market regime (HH, HL, LH, and
LL). It also shows the average (annualized) risk-free rate and stock excess return at a 2-weeks horizon in
each regime. The threshold values for volatility and uncertainty are given by their mean plus one half of
their standard deviation. We say that volatility and uncertainty are high (respectively, low), when they are
above (respectively, below) their threshold values. Both volatility and uncertainty are sampled at the weekly
frequency from January 1986 until December 2020.

36



τ Unconditional Volatility Volatility and Uncertainty

1 1.558 1.552 1.557
2 1.989 1.986 1.978
3 2.277 2.274 2.258
4 2.527 2.522 2.503
5 2.754 2.750 2.725
6 2.950 2.946 2.915
7 3.130 3.126 3.088
8 3.288 3.289 3.241
9 3.438 3.444 3.389
10 3.590 3.595 3.538
11 3.743 3.762 3.703
12 3.888 3.932 3.870

Table 3: Root mean squared error (×100) for different out-of-sample stock excess return forecasts

Notes: This table reports the root mean squared error (RMSE), multiplied by 100 for ease of illustration

purposes, from out-of-sample forecasts of stock excess return using horizons 1 through 12 weeks, based on three

different models: (i) r̂e,t+τ = β̂0 (unconditional mean equal to 7.70%), (ii) r̂e,t+τ = β̂0 + β̂vv
2
t (conditioning

on volatility), and (iii) r̂e,t+τ = β̂0 + β̂vv
2
t + β̂ηηtv

2
t (conditioning on volatility and uncertainty). A lower

RMSE indicates a better forecast performance. The estimation period starts by using the first half of the full

sample: from January 1986 until June 2003. We then update our estimation one week at a time by using a

rolling expanding window. The out-of-sample period corresponds to the remaining observations in our sample,

starting with the period from July 2003 until December 2020.
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Figure 1: Uncertainty and volatility regimes

Notes: The figure shows a scatter plot of standardized uncertainty (proxied by the economic policy uncertainty
index EPUt) and volatility (proxied by realized volatility). Both are sampled at the weekly frequency from
January 1986 until December 2020. The threshold values for volatility and uncertainty are given by their
mean plus one half of their standard deviation. We say that volatility and uncertainty are high (respectively,
low), when they are above (respectively, below) their threshold values. High disconnect occurs when either
uncertainty is high while volatility is low (denoted “HL”) or when uncertainty is low while volatility is high
(denoted “LH”). In the other two quadrants, uncertainty and volatility are in sync and disconnect is low.
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Figure 2: Time series of volatility, uncertainty and disconnect

Notes: Panel A shows uncertainty (proxied by the economic policy uncertainty index EPUt) and volatility

(proxied by realized volatility). Panel B shows the disconnect process (ηt) defined as the ratio of the EPU

index divided by realized volatility, normalized to have a mean of 1. The sample period is from January

1986 until December 2020, and the data is sampled at the weekly frequency. The shaded areas correspond to

three sub-periods associated with high disconnect: the financial crisis (from July 2007 until March 2009), the

US 2016 election (from July 2016 until January 2018), and the Covid-19 pandemic (from January 2020 until

December 2020).
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Figure 3: Stock excess return, Sharpe ratio, and risk-free rate conditional on regimes of uncertainty
and volatility

Notes: This figure shows the annualized average stock excess return (in %), Sharpe ratio, and risk-free rate (in

%) over a given horizon τ = 1, . . . , 12 weeks, conditional on being in one of the four market regimes: (i) both

volatility and uncertainty are high (HH), (ii) high uncertainty and low volatility (HL), (iii) low uncertainty and

high volatility (LH), or (iv) both low uncertainty and low volatility (LL). The threshold values for volatility

and uncertainty are given by their mean plus one half of their standard deviation. We say that volatility and

uncertainty are high (respectively, low), when they are above (respectively, below) their threshold values. The

sample period is from January 1986 until December 2020, and the data is sampled at the weekly frequency.
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Figure 4: Regression of stock excess return and risk-free rate on volatility and uncertainty

Notes: The left charts correspond to regressions of stock excess return on (squared) volatility (v2t ) and uncer-

tainty (v2t ηt), and the charts on the right show regressions of the risk-free rate on the same regressors. All

regressions are run over horizons of up to 12 weeks. Panels A and B show estimated coefficients from univariate

regressions on a variance term only. Panels B and C show estimated coefficients from bivariate regressions

on variance and an uncertainty term (based on Proposition 2). The shaded areas represent 95% confidence

intervals constructed using auto-correlation and heteroskedasticity corrected standard errors (HAC). Panels

D and E show the adjusted R2 (in %) from the uni- and bi-variate regressions in panels A, B, C and D. The

sample period is from January 1986 until December 2020, and the data is sampled at the weekly frequency.
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Figure 5: Portfolios and wealth evolution: full sample

Notes: Panels A and B show for two- and four-weeks horizons, respectively, the equity portfolio weights

according to three strategies: “Index” consists on investing only in the stock (ωt = 1), “Vol Only” forecasts

the equity premium conditioning on volatility only, and “Vol & Unc” forecasts the equity premium conditioning

on both volatility and uncertainty. Panels C and D show for two- and four-weeks horizons, respectively, the

cumulative wealth evolution associated with each portfolio strategy in Panels A and B. The initial wealth in

panels C and D is fixed to 100. The investment and model estimation periods are both from January 1986

until December 2020. The shaded areas correspond to three sub-periods associated with high disconnect: the

financial crisis (from July 2007 until March 2009), the US 2016 election (from July 2016 until January 2018),

and the Covid-19 pandemic (from January 2020 until December 2020).
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Figure 6: Portfolio performance measures: full sample

Notes: This figure reports measures of risk-adjusted wealth excess returns for: index investing, portfolio

conditioning on volatility only, and portfolio conditioning on volatility and uncertainty. The statistics shown

are: average and standard deviation of excess return (in %), maximum drawdown (in %), 5% Value-at-Risk

(in %), Sharpe ratio, and Treynor ratio. The investment and model estimation periods are both from January

1986 until December 2020.
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Figure 7: Alphas and betas: full sample

Notes: Panels A and B show the estimated alpha and beta from a CAPM model, respectively. These are

obtained by regressing the excess return of wealth associated with each active portfolio strategy onto the

excess return of the equity market. Panels C and D show estimated alphas from alternative models. The

three-factor alpha is obtained from performing the regressions onto the excess return of the market, the SMB

(“Small Minus Big”) factor, and the HML (“High Minus Low”) factor. The five factor alpha is obtained

from regressing onto the excess return of the market, the SMB factor, the HML factor, the RMW (“Robust

Minus Weak”) factor, and the CMA (“Conservative Minus Aggressive”) factor. The investment and model

estimation periods are both from January 1986 until December 2020.
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Figure 8: Wealth evolution and portfolio performance measures around the 2008 Financial Crisis

Notes: The elements in this figure match closely those from figures 5 and 6, except that in this figure the

investment period is restricted to the financial crisis period (from July 2007 until March 2009). The estimation

period is from January 1986 until December 2020. The initial wealth in panels A and B is fixed to 100.
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Figure 9: Wealth evolution and portfolio performance measures around the 2016 US Election

Notes: The elements in this figure match closely those from figures 5 and 6, except that in this figure the

investment period is restricted to the 2016 US election period (from July 2016 until January 2018). The

estimation period is from January 1986 until December 2020. The initial wealth in panels A and B is fixed to

100.
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Figure 10: Wealth evolution and portfolio performance measures around the COVID-19 pandemic

Notes: The elements in this figure match closely those from figures 5 and 6, except that in this figure the
investment period is restricted to the COVID-19 pandemic period (from January 2020 until December 2020).
The estimation period is from January 1986 until December 2020. The initial wealth in panels A and B is
fixed to 100.
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